Sains Malaysiana 54(5)(2025): 1319-1330
            
          
          http://doi.org/10.17576/jsm-2025-5405-10
            
          
          
             
          
          Preclinical Safety Evaluation of WJMSCs and Their Secretome
            
          
          (Penilaian Keselamatan Praklinikal WJMSC dan Sekretomnya)
            
          
          
             
          
          PREMASANGERY
            KATHIVALOO1,2,*,
            SUBRAMANI PARASURAMAN3, BADRUL AKMAL HISHAM MD YUSOFF4,
            RAZIANA RASIB1, KARTHIK CHANDRAN1 &
            KATHIRESANV.SATHASIVAM2
  
          
             
          
          1Meluha Therapeutics Sdn Bhd, Lot 1G-2G Kompleks Lanai, 62250
            Putrajaya, Malaysia
            
          
          2Department of Biotechnology, Faculty of Applied Sciences, AIMST
            University, Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia
  
          3Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Jalan Bedong-Semeling, 08100 Bedong,
            Kedah, Malaysia
            
          
          4Department of Orthopedics &
            Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  
          
          
             
          
          Diserahkan: 5 Julai 2024/Diterima:
            24 Januari 2025
  
          
          
             
          
          Abstract
            
          
          Mesenchymal stem cells (MSC) are a promising therapy in regenerative
            medicine due to their unique ability to differentiate into other cells. Among
            established sources of MSC, MSC derived from Wharton’s jelly (WJSC) of an
            umbilical cord is a popular source since it involves a painless procedure to
            obtain the cord with an exceptional proliferation rate compared to other
            sources. However, the safety and efficacy of MSC must be confirmed through
            preclinical studies before clinical trials in humans. A study was designed to
            achieve the maximum tolerable dose (MTD) and safety and toxicity effects of
            WJSC and its secretomes in animal models. The MTD was
            achieved through acute toxicity testing on healthy female Sprague Dawley (SD)
            rats while the safety was assessed using a subchronic toxicity study on healthy male and female SD rats divided into four groups
            (control, low dose, medium dose and high dose). The safety assessments were
            then evaluated through biochemical, haematological, and histopathological
            analyses where the data obtained were analysed using a one-way ANOVA followed
            by Tukey’s test. Statistical analysis confirmed no significant differences in
            all tests performed in the study groups. At the study's termination, neither
            cells nor secretomes injected rats were found to be deceased
            and no toxic or severe adverse effects were discovered. Thus, both WJSC and
            their secretomes applications in humans could be
            considered harmless for medical purposes.
  
          
          Keywords: Acute toxicity; safety and efficacy; subchronic toxicity; Wharton’s jelly stem cells
            
          
           
            
          
          Abstrak
            
          
          Sel
            stem mesenkimal (MSC) merupakan terapi yang meyakinkan dalam perubatan
            regeneratif kerana keupayaan uniknya untuk membeza menjadi sel lain. Antara
            sumber MSC yang ada pada masa ini adalah MSC daripada jeli Wharton (WJSC) tali pusat
            yang merupakan sumber popular kerana mempunyai kadar percambahan yang lebih
            banyak berbanding sumber lain dan tidak melibatkan prosedur yang menyakitkan.
            Walau bagaimanapun, keselamatan dan keberkesanan MSC mesti disahkan melalui
            kajian praklinikal sebelum ujian klinikal pada manusia. Satu kajian telah
            direka untuk mencapai dos maksimum yang boleh diterima (MTD) dan kesan
            keselamatan dan ketoksikan WJSC dan sekretomnya dalam model haiwan. MTD dicapai
            melalui ujian toksisiti akut ke atas tikus Sprague Dawley (SD) betina yang
            sihat manakala keselamatan dinilai menggunakan kajian toksisiti subkronik ke
            atas tikus SD jantan dan betina sihat yang dibahagikan kepada empat kumpulan
            (kawalan, dos rendah, dos sederhana dan dos tinggi). Penilaian keselamatan
            kemudiannya dinilai melalui analisis biokimia, hematologi dan histopatologi dan
            data yang diperoleh dianalisis menggunakan ANOVA sehala diikuti dengan ujian
            Tukey. Analisis statistik mengesahkan tiada perbezaan yang signifikan dalam
            semua ujian yang dijalankan dalam kumpulan kajian. Pada pengakhiran kajian,
            tiada tikus yang disuntik dengan sel dan sekretom ditemui mati dan tiada kesan
            toksik atau kesan sampingan yang teruk ditemui. Oleh itu, kedua-dua aplikasi
            WJSC dan sekretom untuk manusia boleh dianggap tidak berbahaya untuk tujuan
            perubatan.
            
          
          Kata kunci: Keselamatan dan keberkesanan; ketoksikan
            akut; ketoksikan subkronik; sel stem jeli Wharton
  
          
             
          
          RUJUKAN
            
          
          Aithal, A.P., Bairy, L.K. & Seetharam,
            R.N. 2017. Safety assessment of human bone marrow- derived mesenchymal stromal
            cells transplantation in wistar rats. Journal of
              Clinical and Diagnostic Research 11(9): FF01-FF03.
            https://doi.org/10.7860/JCDR/2017/29515.10534
  
          
          Al-Qarakhli, A.M.A., Yusop, N., Waddington, R.J. & Moseley, R. 2019. Effects
            of high glucose conditions on the expansion and differentiation capabilities of
            mesenchymal stromal cells derived from rat endosteal niche. BMC Molecular
              and Cell Biology 20: 51. https://doi.org/10.1186/s12860-019-0235-y
  
          
          Amable, P., Teixeira, M.V., Carias, R.B.,
            Granjeiro, J. & Borojevic, R. 2014. Protein synthesis
            and secretion in human mesenchymal cells derived from bone marrow, adipose
            tissue and Wharton’s jelly. Stem Cell Research & Therapy 5(2): 53.
            https://doi.org/10.1186/scrt442
  
          
          Arome, D. & Chinedu, E. 2013. The importance of
            toxicity testing. Journal of Pharmaceutical and BioSciences 4: 146-148.
  
          
          Aurora, A.B. & Olson, E.N. 2014. Immune modulation
            of stem cells and regeneration. Cell Stem Cell 15(1): 14-25.
            https://doi.org/10.1016/j.stem.2014.06.009
  
          
          Balasubramanian, S., Thej,
            C., Venugopal, P., Priya, N., Zakaria, Z., SundarRaj, S. & Majumdar, A.S.
            2013. Higher propensity of Wharton’s jelly derived mesenchymal stromal cells
            towards neuronal lineage in comparison to those derived from adipose and bone
            marrow: Increased neuronal differentiation propensity of Wharton’s jelly derived
            MSCs. Cell Biology International 37(5): 507-515.
            https://doi.org/10.1002/cbin.10056
  
          
          Balasubramanian, S., Venugopal, P., Sundarraj, S.,
            Zakaria, Z., Majumdar, A.S. & Ta, M. 2012. Comparison of chemokine and
            receptor gene expression between Wharton’s jelly and bone marrow-derived
            mesenchymal stromal cells. Cytotherapy 14(1):
            26-33. https://doi.org/10.3109/14653249.2011.605119
  
          
          Barry, F.P. & Murphy, J.M. 2004. Mesenchymal stem
            cells: Clinical applications and biological characterization. The
              International Journal of Biochemistry & Cell Biology 36(4): 568-584.
            https://doi.org/10.1016/j.biocel.2003.11.001
  
          
          Chan, A.M.L., Ng, A.M.H., Mohd Yunus, M.H., Hj Idrus, R.B., Law, J.X., Yazid, M.D., Chin, K.Y.,
            Shamsuddin, S.A., Mohd Yusof, M.R., Razali, R.A., Mat Afandi, M.A., Hassan,
            M.N.F., Ng, S.N., Koh, B. & Lokanathan, Y. 2022.
            Safety study of allogeneic mesenchymal stem cell therapy in animal model. Regenerative
              Therapy 19: 158-165. https://doi.org/10.1016/j.reth.2022.01.008
  
          
          Conconi, M.T., Di Liddo, R.,
            Tommasini, M., Calore, C. & Parnigotto, P.P.
            2011. Phenotype and differentiation potential of stromal populations obtained
            from various zones of human umbilical cord: An overview. TOTERMJ 4(1): 6-20.
            https://doi.org/10.2174/1875043501104010006
  
          
          Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans,
            R.J., Keating, A., Prockop, D.J. & Horwitz, E.M.
            2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The
            International Society for Cellular Therapy Position Statement. Cytotherapy 8(4): 315-317.
            https://doi.org/10.1080/14653240600855905
  
          
          Frey-Vasconcells, J.,
            Whittlesey, K.J., Baum, E. & Feigal, E.G. 2012.
            Translation of stem cell research: Points to consider in designing preclinical
            animal studies. Stem Cells Translational Medicine 1(5): 353-358.
            https://doi.org/10.5966/sctm.2012-0018
  
          
          Friedman, R., Betancur, M., Boissel,
            L., Tuncer, H., Cetrulo, C. & Klingemann, H. 2007. Umbilical cord
            mesenchymal stem cells: Adjuvants for human cell transplantation. Biology of
              Blood and Marrow Transplantation 13(12): 1477-1486.
            https://doi.org/10.1016/j.bbmt.2007.08.048
  
          
          Halme, D.G. & Kessler, D.A. 2006. FDA regulation
            of stem-cell-based therapies. New England Journal of Medicine 355(16):
            1730-1735. https://doi.org/10.1056/NEJMhpr063086
  
          
          He, J., Ruan, G., Yao, X., Liu, J., Zhu, X., Zhao,
            J., Pang, R., Li, Z. & Pan, X. 2017. Chronic toxicity test in cynomolgus
            monkeys for 98 days with repeated intravenous infusion of cynomolgus umbilical
            cord mesenchymal stem cells. Cellular Physiology and Biochemistry 43(3):
            891-904. https://doi.org/10.1159/000481639
  
          
          Hoffmann, A., Floerkemeier,
            T., Melzer, C. & Hass, R. 2017. Comparison of in vitro -Cultivation
            of human mesenchymal stroma/stem cells derived from bone marrow and umbilical
            cord: in vitro -cultivation of human mesenchymal stroma/stem cells. Journal
              of Tissue Engineering and Regenerative Medicine 11(9): 2565-2581.
            https://doi.org/10.1002/term.2153
  
          
          Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L.,
            Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S.,
            Lisberg, A., Low, W.C., Largaespada, D.A. & Verfaillie, C.M. 2002.
            Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893): 41-49. https://doi.org/10.1038/nature00870
  
          
          Jo, C.H., Kim, O.S., Park, E.Y., Kim, B.J., Lee,
            J.H., Kang, S.B., Lee, J.H., Han, H.S., Rhee, S.H. & Yoon, K.S. 2008. Fetal mesenchymal stem cells derived from human umbilical
            cord sustain primitive characteristics during extensive expansion. Cell and
              Tissue Research 334(3): 423-433. https://doi.org/10.1007/s00441-008-0696-3
  
          
          Joers, V.L. & Emborg, M.E. 2010. Preclinical assessment
            of stem cell therapies for neurological diseases. ILAR Journal 51(1): 24-41.
            https://doi.org/10.1093/ilar.51.1.24
  
          
          Kannaiyan, J., Narayanan, S., Palaniyandi,
            M. & Pandey, A. 2017. Acute toxicity study of mesenchymal stromal cells
            derived from Wharton’s jelly in mouse by intravenous and subcutaneous route. International
              Journal of Research and Development in Pharmacy & Life Sciences 6(5):
            2748-2756. https://doi.org/10.21276/IJRDPL.2278-0238.2017.6(5).2748-2756
  
          
          Kim, H.O., Choi, S.M. & Kim, H.S. 2013.
            Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative
              Medicine 10(3): 93-101. https://doi.org/10.1007/s13770-013-0010-7
  
          
          Kuchroo, P., Dave, V., Vijayan, A., Viswanathan, C.
  & Ghosh, D. 2015. Paracrine factors secreted by umbilical cord-derived
            mesenchymal stem cells induce angio-genesis in vitro by a VEGF-independent
            pathway. Stem Cells and Development 24(4): 437-450.
            https://doi.org/10.1089/scd.2014.0184
  
          
          McElreavey, K.D., Irvine, A.I., Ennis, K.T. & McLean,
            W.H.I. 1991. Isolation, culture and characterisation of fibroblast-like cells
            derived from the Wharton’s jelly portion of human umbilical cord. Biochemical
              Society Transactions 19(1): 29S-29S. https://doi.org/10.1042/bst019029s
  
          
          OECD. 2008.Test No. 407: Repeated dose 28-day oral
            toxicity study in rodents. OECD Guidelines for the Testing of Chemicals, Section 4. https://doi.org/10.1787/9789264070684-en  
  
          
          OECD. 2002. Test No. 423: Acute oral toxicity -
            Acute toxic class method. OECD Guidelines for the Testing of Chemicals,
            Section 4. https://doi.org/10.1787/9789264071001-en
  
          
          Ranjbaran, H., Abediankenari, S.,
            Mohammadi, M., Jafari, N., Khalilian, A., Rahmani,
            Z., Momeninezhad Amiri, M.
  & Ebrahimi, P. 2018. Wharton’s jelly derived-mesenchymal stem cells:
            Isolation and characterization. Acta Medica Iranica 56(1): 28-33.
  
          
          Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C.,
            Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C. & Chen, C.C. 2004. Mesenchymal stem
            cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7): 1330-1337. https://doi.org/10.1634/stemcells.2004-0013
  
          
          Wang, Y., Han, Z.B., Ma, J., Zuo, C., Geng, J.,
            Gong, W., Sun, Y., Li, H., Wang, B., Zhang, L., He, Y. & Han, Z.C. 2012.
            Toxicity study of multiple-administration human umbilical cord mesenchymal stem
            cells in cynomolgus monkeys. Stem Cells and Development 21(9): 1401-1408.
            https://doi.org/10.1089/scd.2011.0441
  
          
          Weil, B.R., Abarbanell, A.M., Herrmann, J.L., Wang,
            Y. & Meldrum, D.R. 2009. High glucose concentration in cell culture medium
            does not acutely affect human mesenchymal stem cell growth factor production or
            proliferation. American Journal of Physiology-Regulatory, Integrative and
              Comparative Physiology 296(6): R1735-R1743.
            https://doi.org/10.1152/ajpregu.90876.2008
  
          
          Xu, W., Zhang, X., Qian, H., Zhu, W., Sun, X., Hu,
            J., Zhou, H. & Chen, Y. 2004. Mesenchymal stern cells from adult human bone
            marrow differentiate into a cardio-myocyte phenotype in vitro. Experimental
              Biology and Medicine 229(7): 623-631.
            https://doi.org/10.1177/153537020422900706
  
          
             
          
          *Pengarang untuk surat-menyurat; email:
            kremasangery@gmail.com